

Matter Dominance in the Universe

Matter-antimatter
symmetric big bang

baryogenesis

Matter dominated Universe

To generate asymmetry, need three conditions (*Sakharov*):

- Baryon number violation
- C and CP symmetry violation
- Interactions out of thermal equilibrium

Charged weak interaction **maximally violates** C and P symmetries

W[±] bosons only couple to *left-handed* particles and *right-handed* antiparticles

C-violation necessary for baryogenesis, otherwise equal numbers of baryons and antibaryons would be produced

CP violation is a necessary condition of baryogenesis: otherwise equal numbers of left-handed baryons and right-handed antibaryons would be produced.

CP violation is a necessary condition of baryogenesis: otherwise equal numbers of left-handed baryons and right-handed antibaryons would be produced.

CP violation first observed in neutral kaons (1964):

$$\Gamma(K_L^{0}{\to}\pi^-e^+\overline{\nu}_e) \geq \Gamma(K_L^{0}{\to}\pi^+e^-\nu_e)$$

Allows matter and antimatter to be distinguished

CPV in the Standard Model

CKM Quark mixing matrix: 3 mixing angles and one *complex phase* δ

Nonzero complex phase \leftrightarrow CP violation

$$egin{pmatrix} V_{ ext{CKM}} \ \begin{pmatrix} d' \ s' \ b' \end{pmatrix} = egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix} egin{pmatrix} d \ s \ b \end{pmatrix}$$

$$V_{\text{CKM}} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

CP transformation: $i \rightarrow -i$

Complex matrix elements different for particle and antiparticle interactions

CPV in the Standard Model

CKM Quark mixing matrix: 3 mixing angles and one *complex phase* δ

Nonzero complex phase \leftrightarrow CP violation

$$egin{pmatrix} V_{ ext{CKM}} \ \begin{pmatrix} d' \ s' \ b' \end{pmatrix} = \left(egin{array}{ccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight) \left(egin{array}{ccc} d \ s \ b \end{array}
ight)$$

$$V_{\text{CKM}} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

CPV impossible in 2x2 matrix ⇒ observation of CPV in quark sector motivated three generation model (1973) four years before discovery of b quark at Fermilab (1977)

CPV in the Standard Model

CKM Quark mixing matrix: 3 mixing angles and one *complex phase* δ

Nonzero complex phase \leftrightarrow CP violation

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

$$V_{\text{CKM}} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

CPV impossible in 2x2 matrix ⇒ observation of CPV in quark sector motivated three generation model (1973) four years before discovery of b quark at Fermilab (1977)

Level of CPV in the SM **far too small** to account for matterantimatter asymmetry

Vital to test CKM matrix and search for new sources of CPV

Types of CP Violation

Three categories of CP violation:

1) Direct
$$\Gamma(A \to f) \neq \Gamma(\overline{A} \to \overline{f})$$

Quantified by asymmetries in decay branching ratios, e.g.

$$A_{D_{+}^{0}K^{\pm}} \equiv \frac{\Gamma(B^{-} \to D^{0}K^{-}) - \Gamma(B^{+} \to D^{0}K^{+})}{\Gamma(B^{-} \to D^{0}K^{-}) + \Gamma(B^{+} \to D^{0}K^{+})} = +0.19 \pm 0.03 \quad (>5\sigma)$$

Types of CP Violation

Three categories of CP violation:

- 1) Direct $\Gamma(A \to f) \neq \Gamma(\overline{A} \to \overline{f})$
- 2) In mixing $\Gamma(A \to \overline{A}) \neq \Gamma(\overline{A} \to A)$

Quantified by asymmetries in mixing of neutral K, D, B mesons, e.g.

$$\mathbf{a^{d}_{sl}} \equiv \frac{\Gamma(\overline{\mathbf{B}^{0}} \to \mathbf{B}^{0} \to \boldsymbol{\ell}^{+}X) - \Gamma(\mathbf{B}^{0} \to \overline{\mathbf{B}^{0}} \to \boldsymbol{\ell}^{-}X)}{\Gamma(\overline{\mathbf{B}^{0}} \to \mathbf{B}^{0} \to \boldsymbol{\ell}^{+}X) + \Gamma(\mathbf{B}^{0} \to \overline{\mathbf{B}^{0}} \to \boldsymbol{\ell}^{-}X)}$$

Today's topic

Not yet observed in B, D mesons

Types of CP Violation

Three categories of CP violation:

1) Direct
$$\Gamma(A \to f) \neq \Gamma(\overline{A} \to \overline{f})$$

- 2) In mixing $\Gamma(A \to \overline{A}) \neq \Gamma(\overline{A} \to A)$
- 3) In interference between mixing and decay

Quantified by asymmetries in decays of neutral mesons, where *same final state* is allowed for direct and mixed decays, e.g.

$$A_{\phi K^0}(t) \ \equiv \frac{d\Gamma/dt(\ \overline{B}{}^0 \to \phi K^0\) - d\Gamma/dt(\ B^0 \to \phi K^0\)}{d\Gamma/dt(\ \overline{B}{}^0 \to \phi K^0\) + d\Gamma/dt(\ B^0 \to \phi K^0\)}$$

Neutral B mesons oscillate into their antiparticles via weak interactions:

Time-evolution governed by Schrödinger equation:

$$i\frac{\mathrm{d}}{\mathrm{d}t} \left(\begin{array}{c} |B_q(t)\rangle \\ |\bar{B}_q(t)\rangle \end{array} \right) = \left(M^q - \frac{\mathrm{i}}{2}\Gamma^q \right) \left(\begin{array}{c} |B_q(t)\rangle \\ |\bar{B}_q(t)\rangle \end{array} \right)$$

Heavy (B_{qH}) and light (B_{qL}) mass eigenstates are superpositions of flavor eigenstates...

... Obtained by diagonalising this matrix

Neutral B mesons oscillate into their antiparticles via weak interactions:

System parameterized by:

$$\Delta M_{q} = M(B_{qH}) - M(B_{qL})$$

$$(=2|M^{q}_{12}|)$$

$$\Delta\Gamma_{\rm q} = \Gamma(B_{\rm qL}) - \Gamma(B_{\rm qH})$$

$$(=2|\Gamma^{q}_{12}|\cos\varphi_{q})$$

$$\phi_q = arg(-M^q_{12}/\Gamma^q_{12})$$

Neutral B mesons oscillate into their antiparticles via weak interactions:

Oscillations very well-established in both B⁰ and B_s⁰ systems:

$$\Delta M_d = 0.507 \pm 0.004 \text{ ps}^{-1}$$

$$\Delta M_s = 17.69 \pm 0.08 \text{ ps}^{-1}$$

B_s⁰ mixing discovered at Tevatron, 2006

'slow' mixing: probability of oscillation prior to decay depends strongly on decay time

'fast' mixing: experimentally, ~50% oscillation probability ~regardless of decay time

Neutral B mesons oscillate into their antiparticles via weak interactions:

Oscillations very well-established in both B⁰ and B_s⁰ systems:

$$\Delta M_d = 0.507 \pm 0.004 \text{ ps}^{-1}$$

$$\Delta M_s = 17.69 \pm 0.08 \text{ ps}^{-1}$$

'fast' mixing: experimentally, ~50% oscillation probability ~regardless of decay time

Complex phase in CKM matrix \Rightarrow $P[B_{(s)}^0 \to \overline{B}_{(s)}^0] \stackrel{?}{\neq} P[\overline{B}_{(s)}^0 \to \overline{B}_{(s)}^0]$

Studies of asymmetries in mixing are a sensitive probe of CPV.

Define semileptonic mixing asymmetry:

$$a_{sl}^q = \frac{\Delta \Gamma_q}{\Delta M_q} \cdot \tan(\phi_q) = \frac{\Gamma(\bar{B}_q^0 \to B_q^0 \to \ell^+ X) - \Gamma(B_q^0 \to \bar{B}_q^0 \to \ell^- X)}{\Gamma(\bar{B}_q^0 \to B_q^0 \to \ell^+ X) + \Gamma(B_q^0 \to \bar{B}_q^0 \to \ell^- X)}$$

SM values for both B^0 and B^0_s are negligible compared to experimental precision:

$$a_{sl}^{d} = (-0.041 \pm 0.006)\%$$

$$a_{sl}^{s} = (-0.0019 \pm 0.0003)\%$$

$$a_{sl}^{d} = (-0.05 \pm 0.56)\%$$

$$a_{sl}^{s} = (-0.17 \pm 0.92)\%$$

SM Predictions

Current WA value from B Factories

Previous D0 measurement

Any significant deviation from zero is hence a signal of new physics.

Muons @ D0

Semileptonic decays provide charged lepton 'tag' of B meson flavor at decay time

Experimentally, muons have advantages over electrons at these energies (<20 GeV)

- Easy to identify ⇒ efficient and clean signature for triggers and event selection
- Low 'fake rate': hadronic punchthrough can be suppressed by heavy shielding before muon system
- D0 muon system has wide acceptance $(|\eta(\mu)| \le 2)$, with 3 layers of tracking and scintillation detectors

~12-15 interaction lengths before outer muon system

Muons @ D0

Semileptonic decays provide charged lepton 'tag' of B meson flavor at decay time

Experimentally, muons have advantages over electrons at these energies (<20 GeV)

- Easy to identify ⇒ efficient and clean signature for triggers and event selection
- Low 'fake rate': hadronic punchthrough can be suppressed by heavy shielding before muon system
- D0 muon system has wide acceptance $(|\eta(\mu)| \le 2)$, with 3 layers of tracking and scintillation detectors

Regular reversal of solenoid (tracking) and toroid (muon) magnets cancels detector asymmetries to first order

Typical tracking detectors have charge asymmetries of 1-3% (range-out, lorentz angle)

Muons @ D0

Semileptonic decays provide charged lepton 'tag' of B meson flavor at decay time

Experimentally, muons have advantages over electrons at these energies (<20 GeV)

- Easy to identify ⇒ efficient and clean signature for triggers and event selection
- Low 'fake rate': hadronic punchthrough can be suppressed by heavy shielding before muon system
- D0 muon system has wide acceptance $(|\eta(\mu)| \le 2)$, with 3 layers of tracking and scintillation detectors

Regular reversal of solenoid (tracking) and toroid (muon) magnets cancels detector asymmetries to first order

Proton-antiproton collisions @ $\sqrt{s} = 1.96 \text{ TeV}$

No production asymmetries: symmetric initial state

Compare LHC: must measure production asymmetries

Same-sign Dimuon Asymmetry

Events with two muons of identical charge have large fraction ($\sim 30\%$) from decays of mixed B_(s) mesons

$$\label{eq:Measure raw asymmetry A = } \frac{N(\mu^+\mu^+) - N(\mu^-\mu^-)}{N(\mu^+\mu^+) + N(\mu^-\mu^-)}$$

Relate to 'physical' asymmetry
$$A_{sl}^b = \frac{\Gamma(\overline{b} \rightarrow \mu^+) - \Gamma(b \rightarrow \mu^-)}{\Gamma(\overline{b} \rightarrow \mu^+) + \Gamma(b \rightarrow \mu^-)}$$

 $\begin{array}{c} Contributions \\ from \ both \ B^0 \ and \\ B_s^{\ 0} \ mesons \end{array}$

Same-sign Dimuon Asymmetry

Events with two muons of identical charge have large fraction ($\sim 30\%$) from decays of mixed B_(s) mesons

Measure raw asymmetry
$$A = \frac{N(\mu^+\mu^+) - N(\mu^-\mu^-)}{N(\mu^+\mu^+) + N(\mu^-\mu^-)}$$

Relate to 'physical' asymmetry
$$A^b_{sl} = \frac{\Gamma(\overline{b} \to \mu^+) - \Gamma(b \to \mu^-)}{\Gamma(\overline{b} \to \mu^+) + \Gamma(b \to \mu^-)}$$

$$\frac{Contributions}{from \ both \ B^0 \ and}{B_s^0 \ mesons}$$

Challenge is understanding contributions from other ~70% of dimuon events

First consider single muon asymmetry instead...

Only ~3% of muons from decays of mixed $B_{(s)}^{0}$ mesons

Measure raw asymmetry
$$a = \frac{N(\mu^+) - N(\mu^-)}{N(\mu^+) + N(\mu^-)}$$

Dominated by backgrounds – *provides essential constraints on these background asymmetries* for the dimuon case.

First consider single muon asymmetry instead...

Only ~3% of muons from decays of mixed $B_{(s)}^{0}$ mesons

$$a = \frac{N(\mu^{+}) - N(\mu^{-})}{N(\mu^{+}) + N(\mu^{-})} = f_{mix}A^{b}_{sl} + a_{BG}$$

Raw asymmetry (event counting)

Asymmetry from heavy-flavor decays (diluted by $f_{mix} \approx 0.03$)

Asymmetries from backgrounds and detector effects...

Main background asymmetries: Kaon and pion decay-in-flight to muons (DIF)

Main background asymmetries: Kaon and pion decay-in-flight to muons (DIF)

Positive kaons have smaller interaction cross-section than negative kaons in matter

K⁺ more likely to survive to decay into muons

$$N(K^+{\longrightarrow}\mu^+)>N(K^-{\longrightarrow}\mu^-)$$

In single muon case, expect $\mathbf{a} \approx \mathbf{a}_{BG}$ if background asymmetries are determined correctly

fraction Charge asymmetry

$$\mathbf{a}_{BG} = f_{K}\mathbf{a}_{K} + f_{\pi}\mathbf{a}_{\pi} + f_{p}\mathbf{a}_{p} + (1 - f_{K} - f_{\pi} - f_{p})\delta$$

Kaon DIF and punch-through

Pion DIF and punch-through

...proton punch-through

Asymmetries from backgrounds and detector effects:

• Three fractions

Residual muon reconstruction

asymmetries

• Four asymmetries

Each computed independently in bins of $p_T(\mu)$, $|\eta(\mu)|$

Use independent and separate channels

Observed single muon asymmetry agrees with expectations from

- Hadronic decay in flight
- Punchthrough
- Residual muon reconstruction asymmetry

Agreement versus $pT(\mu)$ and $|\eta(\mu)|$

Compelling closure test demonstrating excellent understanding of background asymmetries

>50% of sample is from heavy flavor (non-oscillated) decays, and no indication of anomalous asymmetry

Now require second, *same-charge muon* in event...

$$A = \ \ \frac{N(\mu^+\mu^+) - N(\mu^-\mu^-)}{N(\mu^+\mu^+) + N(\mu^-\mu^-)}$$

Observed asymmetry significantly different from expected background asymmetry,

$$A - A_{BG} = (-0.246 \pm 0.052 \pm 0.021) \%$$

 $SM: (-0.009 \pm 0.002)\%$

 4.2σ from standard model prediction.

Model-independent.

Interpretation

~30% of dimuon candidates in sample include one muon from **semileptonic decay of neutral B meson after oscillation**.

Enhanced oscillated meson fraction, and significant asymmetry, implies that the origin is **CPV in B mixing**.

$$A^{b}_{sl} = (-0.787 \pm 0.172 \pm 0.093)\%$$

3.9σ from SM prediction (uncertainty on oscillated B fraction lowers significance slightly)

Interpretation

~30% of dimuon candidates in sample include one muon from **semileptonic decay of neutral B meson after oscillation**.

Enhanced oscillated meson fraction, and significant asymmetry, implies that the origin is **CPV in B mixing**.

$$A^b_{sl} = (-0.787 \pm 0.172 \pm 0.093)\%$$

3.9σ from SM prediction (uncertainty on oscillated B fraction lowers significance slightly)

Heavy flavor fraction, and oscillated B⁰/B_s⁰ fractions, are strong functions of impact parameter (IP)

Revisiting Dimuon Asymmetry

In this interpretation, dimuon asymmetry can include contributions from both B^0 and $B_s^{\ 0}$ mesons:

$$A^b_{sl} = C_d a^d_{sl} + C_s a^s_{sl}$$

Divide sample according to IP, to generate overlapping constraints and allow separate determination of a_{sl}^d , a_{sl}^s

$$a_{sl}^d = (-0.12 \pm 0.52)\%$$

$$a_{sl}^s = (-1.81 \pm 1.06)\%$$

Revisiting Dimuon Asymmetry

In this interpretation, dimuon asymmetry can include contributions from both B^0 and $B_s^{\ 0}$ mesons:

$$A^b_{sl} = C_d a^d_{sl} + C_s a^s_{sl}$$

Divide sample according to IP, to generate overlapping constraints and allow separate determination of a_{sl}^d , a_{sl}^s

$$a_{sl}^d = (-0.12 \pm 0.52)\%$$

$$a_{sl}^s = (-1.81 \pm 1.06)\%$$

Need further measurements of specific asymmetries in B^0 and B_s^0 meson mixing and decay

Direct Measurements of aq_{s1}

Reconstruct specific decay channels of $B_{(s)}^{\ 0}$ mesons

Use high statistics samples of semileptonic $\mu D_{(s)}^{(*)\pm}$ decays

Enables simplified extraction of background asymmetries

No 'flavor-tagging' at production – instead rely on existing understanding of oscillation parameters

Aim to over-constrain the (a^d_{sl}, a^s_{sl}) plane

Decays

One decay channel for B_s^0 :

$$\begin{array}{c} B_s^{\ 0} \!\!\to\! \mu^+ \!\nu D_s^{\ -} \!\! X \\ D_s^{\ -} \!\!\to\! \phi \pi^- \\ \phi \to K^+ \!\! K^- \end{array}$$

Decays

One decay channel for B_s^0 :

Two decay channels for B^0 :

1)
$$B^0 \rightarrow \mu^+ \nu D^- X$$
 $D^- \rightarrow K^+ \pi^- \pi^-$

Decays

One decay channel for B_s^0 :

Two decay channels for B^0 :

1)
$$B^0 \rightarrow \mu^+ \nu D^- X$$

 $D^- \rightarrow K^+ \pi^- \pi^-$

2)
$$B^0 \rightarrow \mu^+ \nu D^{*-} X$$
 $D^{*-} \rightarrow D^0 \pi^ D^0 \rightarrow K^+ \pi^-$

Analysis Overview

For each channel...

Raw asymmetry is extracted by counting $\mu D_{(s)}^{(*)\pm}$ signal yields:

$$A = \frac{N_{\mu^{+}D_{(s)}^{(*)-}} - N_{\mu^{-}D_{(s)}^{(*)+}}}{N_{\mu^{+}D_{(s)}^{(*)-}} + N_{\mu^{-}D_{(s)}^{(*)+}}} \equiv \frac{N_{\text{diff}}}{N_{\text{sum}}}$$

This is related to the semileptonic mixing asymmetry:

$$a_{\rm sl}^q = \underbrace{\frac{A - A_{\rm BG}}{F_{B_{(s)}^0}^{\rm osc}}}_{A = 0}$$

A_{BG}: detector-related asymmetries (e.g. positive kaons have higher detection efficiency).

 \Rightarrow (A – A_{BG}) is the background \Rightarrow corrected physical asymmetry – model independent, ≈ 0 in the SM.

Analysis Overview

For each channel...

Raw asymmetry is extracted by counting $\mu D_{(s)}^{(*)\pm}$ signal yields:

$$A = \frac{N_{\mu^{+}D_{(s)}^{(*)-}} - N_{\mu^{-}D_{(s)}^{(*)+}}}{N_{\mu^{+}D_{(s)}^{(*)-}} + N_{\mu^{-}D_{(s)}^{(*)+}}} \equiv \frac{N_{\text{diff}}}{N_{\text{sum}}}$$

This is related to the semileptonic mixing asymmetry:

$$a_{\rm sl}^q = \frac{A - A_{\rm BG}}{F_{B_{(s)}^0}^{\rm osc}}$$

 $\mathbf{F_{B^0(s)}^{osc}}$: fraction of reconstructed $\mu D_{(s)}$ decays from oscillated $B^0_{(s)}$ mesons.

Assume that all other sources of $\mu D_{(s)}$ candidates are charge symmetric (e.g. direct $B^0_{(s)}$ decay, prompt D meson production...)

Analysis Overview

For each channel...

Raw asymmetry is extracted by counting $\mu D_{(s)}^{(*)\pm}$ signal yields:

$$A = \frac{N_{\mu^{+}D_{(s)}^{(*)-}} - N_{\mu^{-}D_{(s)}^{(*)+}}}{N_{\mu^{+}D_{(s)}^{(*)-}} + N_{\mu^{-}D_{(s)}^{(*)+}}} \equiv \frac{N_{\text{diff}}}{N_{\text{sum}}}$$

This is related to the semileptonic mixing asymmetry:

$$a_{\rm sl}^q = \frac{A - A_{\rm BG}}{F_{B_{(s)}^0}^{\rm osc}}$$

- 1) Measure A by fitting mass distributions for sum and difference;
- 2) Measure A_{BG} using data-driven methods from other channels;
- 3) Determine $\mathbf{F}_{\mathbf{B}^{0}(s)}^{\mathbf{osc}}$ using simulation

...then combine inputs to extract a_{sl}^q .

Time Dependence

Meson-antimeson oscillation is a time-dependent process

⇒ non-zero a^q_{sl} manifests as **decay time-dependent asymmetry**

 B_s^0 mesons: 'fast' oscillation ($\tau_s \Delta m_s >> 1$)

t (ps)

Time Dependence

Meson-antimeson oscillation is a time-dependent process

⇒ non-zero a^q_{sl} manifests as **decay time-dependent asymmetry**

B⁰ mesons: 'slow' oscillation ($\tau \Delta m \approx 1$)

Time Dependence

Meson-antimeson oscillation is a time-dependent process

⇒ non-zero a^q_{sl} manifests as **decay time-dependent asymmetry**

B⁰ mesons: 'slow' oscillation ($\tau \Delta m \approx 1$)

Experimentally, we measure the *decay* length in the transverse plane, L_{xy} :

$$ct = L_{xy}(B) \frac{cM(B)}{p_T(B)}$$

In semileptonic decays, the neutrino is undetected: we cannot measure $p_T(B)$, only $p_T(\mu D)$: use *visible proper decay length* (VPDL).

$$VPDL(B) = L_{xy}(B) \frac{cM(B)}{p_T(\mu D)}$$

Limitations:

- 1) Finite resolution on L_{xy}
- 2) Unknown missing momentum from neutrino

⇒ Reduced sensitivity to fast oscillations Quantify using Monte Carlo simulations

B⁰_s mesons:

Oscillations washed out in VPDL – little to be gained from time-dependent analysis.

i.e. for any measured decay time, probability of oscillation is ~50%

⇒ Perform single time-integrated measurement and benefit from reduced systematic uncertainties.

B⁰ mesons:

Oscillation still clear versus VPDL

Small VPDL: sample dominated by direct decays of non-oscillated B^0 \rightarrow little sensitivity to a_{sl}^d

Large VPDL: sample dominated by decays of oscillated B⁰

 \rightarrow good sensitivity to a_{sl}^d

 \Rightarrow Divide sample into six VPDL regions and measure a^d_{sl} separately in each.

B⁰ mesons:

Oscillation still clear versus VPDL

Small VPDL: sample dominated by direct decays of non-oscillated B^0 \rightarrow little sensitivity to a_{sl}^d

Large VPDL: sample dominated by decays of oscillated B⁰

 \rightarrow good sensitivity to a^d_{sl}

- \Rightarrow Divide sample into six VPDL regions and measure $a^d_{\ sl}$ separately in each.
- \Rightarrow First 2 bins are control sample: expect (A A_{BG}) \approx 0

- Single and dimuon **triggers**
- High quality track in muon system, associated with central track

- Single and dimuon **triggers**
- High quality **track** in muon system, associated with **central track**
- 3 additional tracks with total charge $q(ttt) = -q(\mu)$, with loose vertex requirements

- Single and dimuon **triggers**
- High quality **track** in muon system, associated with **central track**
- 3 additional tracks with total charge $q(ttt) = -q(\mu)$, with loose vertex requirements
- Trajectories and invariant mass consistent with D meson decay

- Single and dimuon **triggers**
- High quality **track** in muon system, associated with **central track**
- 3 additional tracks with total charge $q(ttt) = -q(\mu)$, with loose vertex requirements
- Trajectories and invariant mass consistent with D meson decay
- Muon and D meson trajectories and mass consistent with semileptonic B meson decay

Final selections use multivariate discriminants

Final cut on multivariate discriminant chosen to maximize signal significance $S/\sqrt{S+B}$

Final selections use multivariate discriminants

Final cut on multivariate discriminant chosen to maximize signal significance $S/\sqrt{(S+B)}$

Charge-randomised ensemble tests confirm that $S/\sqrt{(S+B)}$ is the proper metric for optimizing performance.

Final selections use multivariate discriminants

Final cut on multivariate discriminant chosen to maximize signal significance $S/\sqrt{(S+B)}$

 B^0 selection optimized separately in each VPDL bin – significantly increases signal in most useful bins.

Magnet Polarity Weighting

Events are weighted such that sum of weights W is same for four (solenoid, toroid) = (\pm, \pm) polarity configurations.

$$W(\pm,\pm) = N_{\min}/N(\pm,\pm)$$

Weights determined separately in each VPDL bin, and for each channel.

Effective statistical loss of around 3-5%

$$N(\mu D^{\pm})$$
: 740,000 \rightarrow 722,000 (2.4% loss) $N(\mu D^{*\pm})$: 545,000 \rightarrow 519,000 (4.8% loss) $N(\mu D_s^{\pm})$: 216,000 \rightarrow 203,000 (6.0% loss)

Raw Asymmetry Extraction

$$\begin{cases} a_{\rm sl}^q = A A_{\rm BG} \\ F_{B_{(s)}^0}^{\rm osc} \end{cases}$$

Extracting Raw Asymmetries

Construct invariant mass distributions that can be fitted to extract $\mu D_{(s)}^{(*)\pm}$ yields:

- $\mathbf{M}(\boldsymbol{\varphi}\boldsymbol{\pi})$ for μD_s^{\pm} channel;
- $M(K\pi\pi)$ for μD^{\pm} channel;
- $\Delta \mathbf{M} = \mathbf{M}(\mathbf{D}^0 \pi) \mathbf{M}(\mathbf{D}^0)$ for $\mu \mathbf{D}^{*\pm}$ channel.

Fill charge-specific histograms H[±] for each distribution, and use to construct sum and difference:

$$a_{\rm sl}^q = \underbrace{A + A_{\rm BG}}_{F_{B_{(s)}}^{\rm osc}}$$

$$H_{\text{sum}} = H^+ + H^-$$
$$H_{\text{diff}} = H^+ - H^-$$

Perform simultaneous binned χ^2 fit of sum and difference to extract asymmetry:

$$\chi^{2} = \sum_{\text{bin } i=1}^{N} \left[\left(\frac{H_{\text{sum}}^{i} - F_{\text{sum}}^{i}}{\sigma_{\text{sum}}^{i}} \right)^{2} + \left(\frac{H_{\text{diff}}^{i} - F_{\text{diff}}^{i}}{\sigma_{\text{diff}}^{i}} \right)^{2} \right]$$

$$\sigma_{\text{sum}}^{i} = \sigma_{\text{diff}}^{i} = \sqrt{H_{\text{sum}}^{i}}$$

 $F_{\text{sum(diff)}}^{i}$ are fit functions $F_{\text{sum(diff)}}$ integrated over width of bin i.

Sum/Difference Fit: μD_s[±]

$$a_{\rm sl}^q = \underbrace{A + A_{\rm BG}}_{F_{B_{(s)}}^{\rm osc}}$$

Single time-integrated fit

Smaller peak from $B^0 \rightarrow \mu\nu D^+$

Also measure asymmetry in this component:

$$A_{D+} = (-1.21 \pm 1.00)\%$$

Signal parameters common to both fits – constrained from sum distribution

Sum/Difference Fit: μD_s[±]

$$a_{\rm sl}^q = \underbrace{A + A_{\rm BG}}_{F_{B_{(s)}}^{\rm osc}}$$

Single time-integrated fit

Smaller peak from $B^0 \rightarrow \mu\nu D^+$

Also measure asymmetry in this component:

$$A_{D+} = (-1.21 \pm 1.00)\%$$

Negligible asymmetry in background $A_{BG} = (0.00 \pm 0.11)\%$ Strong indication that track reconstruction asymmetry is small.

Example Fits: μD[±]

 $a_{\rm sl}^q = \underbrace{A + A_{\rm BG}}_{F_{B_{(s)}}^{\rm osc}}$

For [0.10 < VPDL(B) < 0.20] cm (Bin with highest a_{sl}^d sensitivity)

 $A = 1.48 \pm 0.41 \%$

Significant positive asymmetry: expected due to kaon reconstruction effects.

Example Fits: µD[±]

$$a_{\rm sl}^q = \underbrace{A + A_{\rm BG}}_{F_{B_{(s)}}^{\rm osc}}$$

For [0.10 < VPDL(B) < 0.20] cm (Bin with highest a_{sl}^d sensitivity)

$$A = 1.48 \pm 0.41 \%$$

Hyperbolic tangent models effects of partially-reconstructed decays and reflections, e.g.

$$D^- \rightarrow K^+ \pi^- \pi^- \pi^0$$

$$D^{*-} \rightarrow \pi^-(D^0)K^+\pi^-\pi^0$$

Individual and collective effects studied and validated using MC simulations

Example Fits: µD*±

 $a_{\rm sl}^q = \underbrace{A + A_{\rm BG}}_{F_{B_{(s)}}^0}$

For [0.10 < VPDL(B) < 0.20] cm (Bin with highest a_{sl}^d sensitivity)

 $A = 2.11 \pm 0.44 \%$

Proximity of pion threshold skews shapes of signal and background, and necessitates careful study of BG shape.

Validating Fits

$$a_{\rm sl}^q = \underbrace{A + A_{\rm BG}}_{F_{B_{(s)}}^0}$$

Ensemble tests confirm fits are **unbiased** and report true **uncertainties**:

- 1) Use random number generator to pick candidate charges by 'flipping a biased coin' to obtain samples with different input asymmetries
- 2) Perform fit to extract asymmetry
- 3) Repeat ~5-10K times

Systematic Uncertainties

$$a_{\rm sl}^q = \underbrace{A + A_{\rm BG}}_{F_{B_{(s)}}^{\rm osc}}$$

Allow simultaneous variations in several aspects of fits:

- Bin widths, upper and lower fitting limits
- Fitting functions (sum/diff for both signal and BG components)
- Alternative weighting scheme

Examine effect on final measured asymmetry over this set of fit variants

 μD^{\pm} (similar for other channels)

Source	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6
	-0.10 - 0.00 cm	0.00 - 0.02 cm	$0.02-0.05~{ m cm}$	$0.05 - 0.10 \mathrm{cm}$	$0.10-0.20~{\rm cm}$	$0.20-0.60~\mathrm{cm}$
μD channel						
Bin width	0.09%	0.01%	0.01%	0.01%	0.00%	0.05%
Fit limits	0.17%	0.06%	0.08%	0.05%	0.03%	0.12%
Magnet weighting	0.02%	0.00%	0.00%	0.00%	0.00%	0.01%
Signal model	0.03%	0.03%	0.01%	0.04%	0.01%	0.01%
Background model (sum)	0.03%	0.00%	0.01%	0.01%	0.01%	0.00%
Background model (diff)	0.01%	0.00%	0.01%	0.00%	0.01%	0.02%
Combined systematic	$\pm 0.19\%$	$\pm 0.07\%$	$\pm 0.08\%$	$\pm 0.07\%$	$\pm 0.05\%$	$\pm 0.13\%$
Statistical	$\pm 1.28\%$	$\pm 0.35\%$	$\pm 0.32\%$	$\pm 0.33\%$	$\pm 0.41\%$	$\pm 0.88\%$

For all measurements, systematic uncertainty considerably smaller than statistical.

Detector Asymmetries

$$\begin{cases} a_{\rm sl}^q = \frac{A - A_{\rm BG}}{F_{B_{(s)}^0}^{\rm osc}} \end{cases}$$

Detector Effects – Introduction

Final-state particles can have different detection efficiencies for particles and antiparticles. Two causes:

1) 'Physics' asymmetries due to different interaction cross-sections of particles in the detector (matter) material.

Negatively charged **kaons** interact with nucleons to produce hyperons

- ⇒ shorter path length
- ⇒ lower reconstruction efficiency
- ⇒ positive kaon asymmetry

Detector Effects – Introduction

Final-state particles can have different detection efficiencies for particles and antiparticles. Two causes:

1) 'Physics' asymmetries due to different interaction cross-sections of particles in the detector (matter) material.

Negatively charged **kaons** interact with nucleons to produce hyperons

- ⇒ shorter path length
- ⇒ lower reconstruction efficiency
- ⇒ positive kaon asymmetry

2) Residual asymmetries remaining after magnet polarity weighting, e.g. due to imperfect cancellation of (time-dependent) inactive detector elements.

Detector Effects – Introduction

Final-state particles can have different detection efficiencies for particles and antiparticles. Two causes:

1) 'Physics' asymmetries due to different interaction cross-sections of particles in the detector (matter) material.

Negatively charged kaons interact with nucleons to produce hyperons

- ⇒ shorter path length
 ⇒ lower reconstruction efficiency
 - ⇒ positive kaon asymmetry

2) Residual asymmetries remaining after magnet polarity weighting, e.g. due to imperfect cancellation of (time-dependent) inactive detector elements.

For
$$B^0$$
 channels ($\mu^+K^+\pi^-\pi^-$):
$$A_{BG}=a^\mu+a^K-2a^\pi$$
 For $B_s^{~0}$ channel ($\mu^+\phi\pi^-$):
$$A_{BG}=a^\mu-a^\pi$$

$$a^X \equiv \frac{\varepsilon^{X^+} - \varepsilon^{X^-}}{\varepsilon^{X^+} + \varepsilon^{X^-}}$$

Kaon Reconstruction Asymmetry

Only affects B⁰ channels

Use dedicated, independent decay channel $\mathbf{K}^{*0} \rightarrow \mathbf{K}^{+} \pi^{-}$

Dominated by light-quark fragmentation: no underlying source of production/decay asymmetry

Also includes possible **asymmetry** in reconstruction of opposite-charge **pion**:

$$\frac{N(K^{+}\pi^{-}) - N(K^{-}\pi^{+})}{N(K^{+}\pi^{-}) + N(K^{-}\pi^{+})} = a^{K} - a^{\pi}$$

$$A_{BG}(B^{0}) = a^{\mu} + a^{K} - 2a^{\pi}$$

Kaon Reconstruction Asymmetry

Only affects B⁰ channels

Use dedicated, independent decay channel $K^{*0} \rightarrow K^{+}\pi^{-}$

Kaon path-length dependent: perform separately in 24 bins of $[p(K), |\eta(K)|]$

Convolute a^K distribution with $[p(K),|\eta(K)|]$ for each channel and each VPDL bin to obtain final kaon corrections

$$A_{BG}(B^0) = a^{\mu} + a^K - 2a^{\pi}$$

Residual Muon Asymmetry

Affects all three channels

10x smaller than kaon asymmetry.

Asymmetries not perfectly cancelled by magnet polarity reversal

Dedicated channel $J/\psi \rightarrow \mu^+\mu^-$

Insensitive to track asymmetry – only local muon reconstruction;

Study difference $N(\mu^+t^-) - N(\mu^-t^+)$ and fit invariant mass distribution to extract asymmetry in $p_T(\mu)$ bins;

$$A_{BG}(B^0) = a^{\mu} + a^K - 2a^{\pi}$$

$$A_{BG}(B_s^0) = a^{\mu} - a^{\pi}$$

Residual Track Asymmetry

Affects all three channels

Use $\mathbf{K}^0_S \rightarrow \pi^+ \pi^-$ decays to test relative track asymmetries versus $p_T(\text{track})$

Charge-symmetric process: insensitive to absolute charge asymmetry;

Symmetry breaks down when dividing into separate pT samples.

- 1) Overall track asymmetry will cancel in signal final states ($\mu^+\pi^-$)
- 2) Suggests negligible absolute asymmetry, since any effect should be p_T dependent

Residual Track Asymmetry

Affects all three channels

Use $\mathbf{K}^0{}_S \rightarrow \pi^+\pi^-$ decays to test relative track asymmetries versus $p_T(\text{track})$

Charge-symmetric process: insensitive to absolute charge asymmetry;

Symmetry breaks down when dividing into separate pT samples.

Additional dedicated channel $(K^{*\pm} \rightarrow K_S^0 \pi^{\pm})$ finds no evidence for an absolute asymmetry.

Assign $a^{\pi} = (0.00 \pm 0.05)\%$

- 1) Overall track asymmetry will cancel in signal final states ($\mu^+\pi^-$)
- 2) Suggests negligible absolute asymmetry, since any effect should be p_T dependent

Final A_{BG} Corrections

- Kaon asymmetry x10 larger than muon asymmetry
- Asymmetries consistent across VPDL bins
- Small differences between channels due to different kinematics

For B_s⁰ channel:

 $A_{BG} = (0.11 \pm 0.06)\%$

For
$$B^0 \rightarrow \mu D^{\pm}$$
 channel, $A_{BG} = 1.23\% \rightarrow 1.27\% \pm 0.07\%$

	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6
	-0.10 - 0.00 cm	0.00 - 0.02 cm	0.02 - 0.05 cm	0.05 - 0.10 cm	0.10 - 0.20 cm	$0.20-0.60~{\rm cm}$
μD channel						
A (%)	2.70 ± 1.28	1.02 ± 0.35	1.16 ± 0.32	1.50 ± 0.33	1.48 ± 0.41	1.20 ± 0.88
	± 0.19	± 0.07	± 0.08	± 0.07	± 0.05	± 0.13
a^K (%)	1.128 ± 0.041	1.124 ± 0.040	1.141 ± 0.040	1.147 ± 0.040	1.157 ± 0.040	1.157 ± 0.040
	± 0.014	± 0.014	± 0.014	± 0.014	± 0.015	± 0.014
a^{μ} (%)	0.102 ± 0.025	0.105 ± 0.027	0.107 ± 0.029	0.107 ± 0.029	0.108 ± 0.028	0.108 ± 0.028
	± 0.008	± 0.009	± 0.012	± 0.013	± 0.011	± 0.009
A_{BG} (%)	1.230 ± 0.048	1.229 ± 0.048	1.248 ± 0.049	1.254 ± 0.049	1.265 ± 0.049	1.265 ± 0.049
	± 0.053	± 0.053	± 0.053	± 0.054	± 0.053	± 0.053

(For
$$B^0 \to \mu D^{*\pm}$$
 channel, $A_{BG} = 1.18\% \to 1.20\% \pm 0.08\%$)

Oscillated $B_{(s)}^{0}$ Fraction

$$\begin{cases} a_{\rm sl}^q = \frac{A - A_{\rm BG}}{F_{B_{(s)}^0}^{\rm osc}} \end{cases}$$

Semi-inclusive event selection: missing neutrino prevents unique identification of $B_{(s)}^{\ \ 0}$ mesons;

- Prompt $c \to D$
- B⁺ decays
- B^0 in B_s^0 channel / B_s^0 in B^0 channel
- b baryons (negligible)

Semi-inclusive event selection: missing neutrino prevents unique identification of $B_{(s)}^{\ \ 0}$ mesons;

- Prompt $c \to D$
- B⁺ decays
- B^0 in B_s^0 channel / B_s^0 in B^0 channel
- b baryons (negligible)

$$Br(B^0 \rightarrow \mu^+ \nu D^-) = 2.18 \pm 0.12 \%$$

Semi-inclusive event selection: missing neutrino prevents unique identification of $B_{(s)}^{\ \ 0}$ mesons;

- Prompt $c \to D$
- B⁺ decays
- B^0 in B_s^0 channel / B_s^0 in B^0 channel
- b baryons (negligible)

$$Br(B^0 \rightarrow \mu^+ \nu D^-) = 2.18 \pm 0.12 \%$$

$$Br(B^+ \rightarrow \mu^+ \nu \pi^+ D^-) = 0.42 \pm 0.05 \%$$

Semi-inclusive event selection: missing neutrino prevents unique identification of $B_{(s)}^{\ \ 0}$ mesons;

- Prompt $c \to D$
- B⁺ decays
- B^0 in B_s^0 channel / B_s^0 in B^0 channel
- b baryons (negligible)

$$Br(B^0 \rightarrow \mu^+ \nu D^-) = 2.18 \pm 0.12 \%$$

$$Br(B^+ \rightarrow \mu^+ \nu \pi^+ D^-) = 0.42 \pm 0.05 \%$$

$$\begin{array}{c} Br(B_s^{\ 0}\!\!\to\!\!\mu^+\!\nu D_{s1}^{\ -}\!\!\to\!\mu^+\!\nu\pi^0 K_S^{\ 0}D^-)\\ = 0.08\pm 0.02~\% \end{array}$$

Semi-inclusive event selection: missing neutrino prevents unique identification of $B_{(s)}^{\ \ 0}$ mesons;

Some $\mu D_{(s)}^{(*)}$ candidates arise from other sources:

- Prompt $c \to D$
- B⁺ decays
- B^0 in B_s^0 channel / B_s^0 in B^0 channel
- b baryons (negligible)

 \Rightarrow expect ~15% of μ^+D^- events to come from B^{\pm} , <3% from B_s^0 .

$$Br(B^0 \rightarrow \mu^+ \nu D^-) = 2.18 \pm 0.12 \%$$

$$Br(B^+ \rightarrow \mu^+ \nu \pi^+ D^-) = 0.42 \pm 0.05 \%$$

$$Br(B_s^{\ 0} \rightarrow \mu^+ \nu D_{s1}^{\ -} \rightarrow \mu^+ \nu \pi^0 K_S^{\ 0} D^-)$$

$$= 0.08 \pm 0.02 \%$$

Inclusive Monte Carlo simulation of $X{\rightarrow}\mu D_{(s)}^{(*)}$

(dedicated sample for each channel)

- Prompt c → D
 Only in first 2 VPDL bins (control region)
- B⁺ decays
 Increasing contribution versus VPDL (longer-lived than B⁰)
- B_s⁰ in B⁰ channel
 Small and steady contribution

Inclusive Monte Carlo simulation of $X \rightarrow \mu D_{(s)}^{(*)}$ (dedicated sample for each channel)

- Prompt c → D
 Only in first 2 VPDL bins (control region)
- B⁺ decays
 Increasing contribution versus VPDL (longer-lived than B⁰)
- B_s⁰ in B⁰ channel
 Small and steady contribution

>80% of $\mu D^{(*)}$ signal candidates are from B^0 decays

Simulate oscillations by weighting MC events according to their proper decay time:

$$P_i(B^0) = \frac{1}{2}[1 - \cos(\Delta M_d \cdot t_i)]$$

For B_s^0 channel also include (tiny) effect of nonzero $\Delta\Gamma_s$:

$$F_{B_s^{\ 0}}^{osc} \ = 0.465 \pm 0.017$$

Assign systematic uncertainties for limited knowledge of lifetimes, Δm_q , and decay branching ratios.

Final Results & Combination

$$\left\{ \begin{array}{c} a_{\rm sl}^q = \frac{A - A_{\rm BG}}{F_{B_{(s)}^0}^{\rm osc}} \end{array} \right.$$

B⁰ mesons: a^d_{sl} versus VPDL

Combine within each channel taking all correlations into account (via pseudo-experiment ensembles):

$$a_{\rm sl}^d(\mu D) = [0.43 \pm 0.63 \text{ (stat.)} \pm 0.16 \text{ (syst.)}]\%$$

 $a_{\rm sl}^d(\mu D^*) = [0.92 \pm 0.62 \text{ (stat.)} \pm 0.16 \text{ (syst.)}]\%$

Combination and B_s⁰ Results

Combine two $\mathbf{a}^{\mathbf{d}}_{\mathbf{s}\mathbf{l}}$ measurements, with correlations accounted for:

World's best!

$$a_{\rm sl}^d = [0.68 \pm 0.45 \text{ (stat.)} \pm 0.14 \text{ (syst.)}]\%$$

- Consistent with SM prediction
- More precise than existing WA from B-factories: $(-0.05 \pm 0.56)\%$

Corresponding time-integrated measurement of \mathbf{a}^{s}_{sl} :

$$a_{\rm sl}^s = [-1.08 \pm 0.72 \, ({\rm stat}) \pm 0.17 \, ({\rm syst})] \, \%$$

World's best! *

(*: for a few weeks...)

- Supersedes previous worlds-best measurement (D0, 2009)
- Consistent with results of dimuon asymmetry, and with SM.
- LHCb (preliminary): $a_{sl}^s = (-0.24 \pm 0.54 \pm 0.33)\%$

ad sl Dependence on VPDL

F_{B0} is strong function of VPDL

 \Rightarrow Any real physical asymmetry from B⁰ mixing should be VPDL dependent;

Plot $(A - A_{BG})$ versus VPDL, to look for dependence:

 $\chi^2 = 2.3$ (4.5) for a_{sl}^d from this measurement;

2.7 (6.9) for SM value of $a_{sl}^d (\approx 0)$

ad sl Dependence on VPDL

Now **fit** observed asymmetry $(A - A_{BG})$ to expected VPDL dependence:

$$F(\text{VPDL}) = A_{\text{const}} + F_{B^0}^{\text{osc}}(\text{VPDL}) \cdot a_{\text{sl}}^d$$

Constant term: accounts for any possible residual asymmetries not considered.

 $\mathbf{a_{sl}^d}$: free parameter – depends only on VPDL *shape* of (A – A_{BG}).

From fit:

$$a_{sl}^d = (0.51 \pm 0.86) \%$$

compare (0.43 ± 0.65) % from nominal method

$$A_{\rm const} = (-0.03 \pm 0.23) \%$$

i.e. any residual asymmetries are small and insignificant.

ad sl Dependence on VPDL

Now **fit** observed asymmetry $(A - A_{BG})$ to expected VPDL dependence:

$$F(\text{VPDL}) = A_{\text{const}} + F_{B^0}^{\text{osc}}(\text{VPDL}) \cdot a_{\text{sl}}^d$$

Constant term: accounts for any possible residual asymmetries not considered.

 $\mathbf{a_{sl}^d}$: free parameter – depends only on VPDL *shape* of (A – A_{BG}).

From fit:

$$a_{sl}^d = (1.25 \pm 0.87) \%$$

compare (0.92 ± 0.65) % from nominal method

$$A_{\text{const}} = (-0.09 \pm 0.21) \%$$

i.e. any residual asymmetries are small and insignificant.

Cross-Checks

Repeat entire analyses using pairs of orthogonal sub-sets of data, to test stability of results

Split according to:

- Forward/backward
- Forward/central
- Low/high momentum
- early/late runs

Plus repeat with different muon selection, limited ϕ range ...

All measurements consistent with each other and central value

Combination

Combine D0 results from dimuon asymmetry (2011), a_{sl}^d and a_{sl}^s :

$$a_{\rm sl}^d({\rm comb.}) = (0.10 \pm 0.30)\%,$$

 $a_{\rm sl}^s({\rm comb.}) = (-1.70 \pm 0.56)\%$

Correlation coefficient: -0.50

$$\chi^2/dof = 2.9/2$$

p-value of SM: 0.36% (2.9σ)

B⁰ meson: consistent with SM (zero)

 B_s^0 meson: >3 σ evidence for anomalous CPV, driven by dimuon asymmetry measurements

What about $B_s^0 \rightarrow J/\psi \phi$?

Measurements of CP violating phase in $B_s^0 \rightarrow J/\psi \phi$ channel all consistent with SM prediction (D0, CDF, LHCb, Atlas)

This is a test of CPV in the interference between mixing and decay

New Physics contributions to this channel *expected* to be similar to those in mixing alone, but still places for CPV to hide.

Need further study of CP violating parameters from as many angles as possible.

Summary

• We present new precise measurements of the semileptonic mixing asymmetry in B^0 and B_s^0 mesons:

$$a_{\rm sl}^d = [0.68 \pm 0.45 \text{ (stat.)} \pm 0.14 \text{ (syst.)}]\%$$

 $a_{\rm sl}^s = [-1.08 \pm 0.72 \text{ (stat)} \pm 0.17 \text{ (syst.)}]\%$

- When combined with dimuon asymmetry result, 3σ evidence of anomalously large CPV in $B_s^{\ 0}$ mixing
- Data-driven methods, using strengths of D0 detector
- Limited input from MC
- Many cross-checks validate measurements

Summary

• We present new precise measurements of the semileptonic mixing asymmetry in B⁰ and B_s⁰ mesons:

$$a_{\rm sl}^d = [0.68 \pm 0.45 \text{ (stat.)} \pm 0.14 \text{ (syst.)}]\%$$

 $a_{\rm sl}^s = [-1.08 \pm 0.72 \text{ (stat)} \pm 0.17 \text{ (syst.)}]\%$

- When combined with dimuon asymmetry result, 3σ evidence of anomalously large CPV in $B_s^{\ 0}$ mixing
- Data-driven methods, using strengths of D0 detector
- Limited input from MC
- Many cross-checks validate measurements

B⁰ arXiv:1208.5813 [hep-ex]
Accepted by PRD

Outlook

New measurements consistent with dimuon asymmetry *and* with SM predictions

Insufficient to resolve tension, but suggestive of CPV in B_s⁰ mixing

Need further investigation of semileptonic mixing asymmetries, plus constraints on direct CPV in B and D mesons

Working on updated dimuon asymmetry analysis from D0, with several improvements and extensions

Thanks for listening

Extra Slides

Additional combination

Combination (including B-fac ad sl)

Combine D0 results from dimuon asymmetry (2011), a_{sl}^d and a_{sl}^s :, and existing WA of a_{sl}^d from B-factories.

$$a_{\rm sl}^d({\rm comb.}) = (0.07 \pm 0.27)\%,$$

 $a_{\rm sl}^s({\rm comb.}) = (-1.67 \pm 0.54)\%$

Correlation coefficient: -0.46

$$\chi^2/\text{dof} = 2.0/2$$

p-value of SM: **0.37%**

 a_{sl}^{s} (LHCb) also shown for comparison $(-0.24 \pm 0.63)\%$

